Appendix

We develop amodel forasingle stage, which represents awork center, e.g., amachining centeror unit
process. We term this as the tactical planning model (TPM). The intentis to develop asimple model for
understanding the impact of the planned lead time and gettingsome guidance on how it dependson
the characteristics of the demand process and the level of capacity.

The single stage transforms some inputinto an output. We assume that the stage operates asfollows:

e Atthe start of each time period, the work to be processed by the stage arrivesto the stage and
joinsa queue. We denote the arrival intime period tby A4 , where the units are in terms of the
workload on the stage. For instance, the units of the arrivals could be hours of processingtime.

e We denote the productioninperiodtby P, where the unitsare interms of the workload, e.g.,

hours of processingtime.
e We assumea linearcontrol rule: P :Q% where P isthe amount of work processedintime
periodt, O isthe queue atstart of periodt, and nis the plannedleadtime, n>1.
In Figure Alwe depictthe single-stage system and notation forthe model: each period the system

demand 4, entersaqueue orwork-in-process, denoted by ), ; each period the stage processes some

portion of the work-in-process, with the outputdenoted by P.
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Figure Al: Single-Stage System

Interpretation:

The amount of work processed at each time periodis a fixed portion of the queue in front of that work
station. Whenthe queue grows, the work center works harder; whenthe queue isshort, the work rate

islower. The underlying assumptionisthatthe system has the flexibility to adjustits production rate,
e.g. by shiftingworkers, working overtime, outsourcing, etc.

We can show using Little’s Law that the average time fora unit of work to complete processingisntime
periods. Furthermore we find experimentally that the variability in the completion timeis very small,

and a very high percentage of the workis completedin LnJor(ﬂ time periods®. Thuswe interpretnas

1 n need not be an integer, but the work completiontime is measured as aninteger number of time periods. So
the statement isinterms of n being rounded down or up to the nearest integer, whichis denoted with the
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the Planned Lead Time (PLT) at the work station. Thatis, we plan on work to require ntime periods to
complete processing at the stage.

Model Analysis:
For the analysis of this model we need state the linear control rule (1) and an inventory balance
equation (2) foreach time period t:

r=9, w

Q[ = Qt—l + At - B—l' (2)

We first divide the second equation (2) by n, and then substitute (1) into the balance equationto geta
smoothing equation:

noon n
=P =(1-a)P_ +a4, (3)

where a= %

Thus, we can expressthe linear control rule (1) as a simple smoothing equation, whereby the production
inthe current periodisthe weighted average of the arrivalsin the period and the production level inthe
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priorperiod. We see immediatelythe impact of the plannedleadtimen: alongerplannedleadtime

resultsina smallersmoothing parameter a; and a smaller a means thatthere is more smoothing of the
demandseries, and hence, the resulting production series is smoother.

We can do repeated substitutioninto (3) to express the current productionin terms of all priordemand:

P=ad+(1-a)ad  +(1-a) ad ,+..
(4)
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For (4) we assume that we have an infinite history of arrivals. If we were to assume (more realistically)
that we have a finite arrival history, say, back to time period 0, then the above expressions would be:

-~

-1

P=Y(1-a)ad_+(1-a) 4, (5)
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where wefix £, = 4,. Thereisvery little difference between (4) and (5) for t > 10 and typical valuesof a

(< 0.5). Itiseasierto workwith equation (4), and thus, we will continue to make the (unrealistic)
assumption of aninfinite history so as to simplify the presentation.



We assume thatthe demand arrival A4,ineveryperiodtisan independentand identically distributed

randomvariable (i.i.d.) with mean E[At] = 1 andvariance Var[At] = o”. From (4) we see that Pis

alsoa randomvariable and we can use (4) to obtain its moments:
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where we use the fact that the geometricweights sumtoone. We find the variance from:

Var[P]= i(l —a)Zj a’ x Var[A,_J
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Thus we have the standard deviation for production being:

[1
SD[P]= ) 8
[7]=2 2n—1 (8)

From thelinearrule (1) and from (6) and (7) , we find that:
_E[ﬁy/_
E[Q]="1", =nu (9)

From (8) and (9) we can see the basicbehavior of the model. As we increase the planned lead time n, we
reduce the standard deviation of the production randomvariable; thatis, we smooth the production.
But a longerplannedleadtime nresultsinalongerqueue of work at the stage, namely alarger work-in-
process.

Settingthe plannedleadtime

To setthe plannedleadtime, onthe one hand, we wantto make it as short as possible so as to minimize
the amount of WIP. Onthe otherhand, we wantit to be longso as to smooth the production
requirements.

To determine the level of smoothing, we assumethe stage has a maximum reasonable capacity given by
U+ y ;thisrepresentsthe amount of output that the stage can produce pertime period, under normal
circumstances. We will set the planned lead time so that the production given by the linear control
policy is within the maximum reasonable capacity most of the time; to make this operational, we
assume a service level B, where Bisthe percent of time that productionis within the maximum
reasonable capacity. Thus we wantto setthe planned lead time so that:



Pr[P<u+x|=p. (10)

Now we make an additional assumption: we assume thatthe system demand A4, is normally distributed,
with mean and standard deviation givenby 4, c. Then Pisalsonormally distributed with meanand

standard deviation given by (6), (8). We can now transform Pintoa standard normal randomvariable

and re-write the left-hand-side of (10) as:
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Where CD( )isthe cumulative distribution function forthe standard normal variable. Now we needto

(11)

setthe expressionin (11) tothe service level B:
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where we have introduced the servicefactor z =@ (IB), forinstanceifthe service level f=0.95,

thenz = 1.64.

The above equation (12) relatesthe plannedlead time to the variability of the demand process, the
service level, and the headroom.

We note from (12) that it suggestsn< 1if zo < y;thisis inconsistent withthe model setupas we
assume n >1. Hence, we understand equation (12) toapplyas longas zo > y;when zo < y,thenthe

plannedleadtimeis one time period.
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